Chapter 16: Line Integrals

Section 1:

Definition 1:

A curve in space is a function r(t) from a closed interval [a,b] to space by: $r(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + l(t)\mathbf{k}$, $a \le t \le b$.

We shall always assume that $r'(t) = g'(t)\mathbf{i} + h'(t)\mathbf{j} + l'(t)\mathbf{k}$ exist and is continuous everywhere in [a,b].

Note:

The curve of the line segment from A to B where $A(a_1, a_2, a_3)$ and $B(b_1, b_2, b_3)$ is

$$r(t) = [(1-t)a_1 + tb_1]\mathbf{i} + [(1-t)a_2 + tb_2]\mathbf{j} + [(1-t)a_3 + tb_3]\mathbf{k}$$

Definition 2:

Suppose C: $r(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + l(t)\mathbf{k}$ with $a \le t \le b$.

Given f(x, y, z) a function of 3 variables which is continuous on C. The line integral of f over C is defined as

 $\int_{C} f(x, y, z) dS = \lim_{\Delta S \to 0} \sum_{m=1}^{n} f(x_m, y_m, z_m) \Delta S_m \text{ where } (x_0, y_0, z_0), \dots, (x_m, y_m, z_m) \text{ are successive points on } C,$ $\Delta S_m \text{ is the length of } C \text{ between } (x_{m-1}, y_{m-1}, z_{m-1}) \text{ and } (x_m, y_m, z_m) \text{ , and } \Delta S = \max(\Delta S_1, \dots, \Delta S_n).$

Formula for evaluating line integral:

Suppose *C* and *f* are as above: Then: $\int_{C} f(x, y, z) dS = \int_{a}^{b} f(g(t), h(t), l(t)) |v(t)| dt$ Where: v(t) = r'(t).

Note: $C_1: r_1(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + l(t)\mathbf{k}$ is a curve in space. $(a \le t \le b)$. C_2 is a curve in space with the same path (as C_1) but in opposite direction. Then $r_2(t) = r_1(a+b-t)$

Section 2:

Definition 1:0

A vector field on an open region D in space is a function F(x, y, z) from D to space given by $F(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$.

We shall always assume that M, N, and P have continuous first order partial derivatives.

Note:

If f(x, y, z) is a function of three variables with continuous first and second order partial derivatives, then $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$ is a vector field on the interior of Domain *f*.

Definition 2:

Suppose *D* is an open region in space. Suppose $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field on *D*. Suppose $C: r(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + l(t)\mathbf{k}$ ($a \le t \le b$) is a curve in *D*. The unit tangent vector to *C* is defined as $T = \frac{v(t)}{|v(t)|}$ provided $v(t) \neq 0$. The line integral of *F* over *C* is defined as $\int F.TdS$.

If *F* represents a force, then above integral is called the work integral. In this case, we write work = work done by *F* over $C = \int_C F.TdS$.

If *F* represents a velocity field, then above integral is called a flow integral. In this case, we write flow = flow of *F* along $C = \int_{C} F.TdS$.

If *F* represents a velocity field and *C* is closed (i.e. r(a) = r(b)), then above integral is called a circulation integral. In this case, we write circulation = circulation of *F* around $C = \int_{C} F.TdS$.

Formula for evaluating line integrals of vector field.

Suppose *F* and *C* are as above. Then: $\int_{C} F.TdS = \int_{a}^{b} F.\frac{dr}{dt} dt$

Notation:

Suppose $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field on some open region *D* in space. Suppose $C: r(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + l(t)\mathbf{k}$ with $a \le t \le b$ is a curve in *D*, then $\int_C F.TdS = \int_C Mdx + Ndy + Pdz$

Section 3:

Definition 1:

Suppose $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field on an open region *D* in space. f(x, y, z) is a function of three variables which is differentiable everywhere in *D*. If $\nabla f(x, y, z) = F(x, y, z)$ for all points (x, y, z) in *D*, we say that *f* is a potential function for *F* on *D*.

Definition 2:

Suppose *F* is a vector field on an open region *D* in space. We say that *F* is conservative if the line integral of *F* is path independent in *D*. i.e., if *A* and *B* are two points in *D* and *C*₁ and *C*₂ are two curves in *D* joining *A* to *B*, then $\int_{C_1} F.TdS = \int_{C_2} F.TdS$.

Theorem 1: Fundamental theorem of line integral (FTLI):

Suppose $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field on an open and connected region in space. Then: F is conservative on $D \Leftrightarrow F$ has a potential function F on D. In this case $\int_C F.TdS = f(B) - f(A)$ for every curve C in D joining A to B.

Definition 3:

A region *D* in space is connected if any two points in *D* can be joined by a curve which lies entirely in *D*.

Definition 4:

A region D in space is simply connected if any closed curve in D can be contracted to a point without ever leaving D.

Theorem 2: The Curl Test:

Suppose $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field on an open connected, simply connected region *D* in space. Then: *F* is conservative on $D \Leftrightarrow \text{Curl } F = 0$

Where Curl $F = \nabla \times F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$

Definition 5:

Suppose *D* is an open region in space.

A differential form on *D* is an expression of the form M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz. We shall always assume that *M*, *N*, and *P* have continuous first order partial derivatives.

Definition 6:

f(x, y, z) is a function of three variables with continuous first and second order partial derivatives. Then the differential of *f* is the differential form $f_x dx + f_y dy + f_z dz$.

Definition 7:

Suppose *D* is an open and connected region in space.

Suppose Mdx + Ndy + Pdz is a differential form on *D*.

Then: If there is a function f(x, y, z) such that df = Mdx + Ndy + Pdz we say that the given differential form is exact $\Leftrightarrow M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is conservative.

Section 4:

Definition 1:

 $F(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ is a vector field on an open region *R* in the plan.

Then, the divergence of *F* is defined as: div
$$F = \nabla F = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j}\right) (M\mathbf{i} + N\mathbf{j}) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}$$

Note:

If
$$F(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$$
, then $\operatorname{Curl} F = \nabla \times F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = -\frac{\partial N}{\partial z}\mathbf{i} + \frac{\partial M}{\partial z}\mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mathbf{k}$
So the **k** component of $\operatorname{Curl} F$ is $(\operatorname{Curl} F)\mathbf{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$.

Theorem 1:

a. Green's Theorem: Flux Divergence form:

Suppose $F = M\mathbf{i} + N\mathbf{j}$ is a vector field in the plane.

Suppose *C* is a simple closed curve in the plane .Simple means, the position vector of the curve is one to one on (a,b).

Then: flux of F across $C = \iint_{R} \operatorname{div} F dA$.

This can be written as $\oint_C M dy - N dx = \iint_R \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) dx dy$

b. Green's Theorem: Circulation Curl form:

Suppose *F*, *C* and *R* are as above. Then: Counterclockwise circulation of *F* around $C = \iint ((\operatorname{Curl} F)\mathbf{k}) dA$

This can be written as: $\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy$